Finden Sie schnell additive fertigungsverfahren für Ihr Unternehmen: 106 Ergebnisse

ADDITIVE FERTIGUNGSVERFAHREN

ADDITIVE FERTIGUNGSVERFAHREN

Bei additiven Fertigungsverfahren werden Bauteile auf CAD-Datenbasis schichtweise aus feinstem Pulver hergestellt. Die Herstellungsprozesse zeichnen sich durch eine sehr hohe Flexibilität und völlig neue Designfreiheiten aus. Bauteile werden in kürzester Zeit und mit hervorragenden mechanischen Eigenschaften produziert.
Additive Manufacturing

Additive Manufacturing

Schnelle Fertigung von Prototypen, Vorserien- sowie Serienproduktionen aus PP und PA12, mit großer Konstruktionsfreiheit und ohne Werkzeugaufwand dank Multi Jet Fusion Technologie. Multi Jet Fusion, kurz MJF, ist das aktuell schnellste und wirtschaftlichste 3D-Druck Verfahren im Kunststoffdruck für äußerst hochwertige Prototypen, Funktionsteile und Serienfertigungen. Diese Technologie, in Kombination mit den ausgewählten Materialien PP (Polypropylen) und PA12 ( Polyamid 12), ist prädestiniert für individuelle high-end-Bauteile. Mit einem der modernsten Geräte auf dem Markt, dem HP Multi Jet Fusion 5210, bietet SPÄH vor allem im Bereich der Serienfertigung entscheidende Vorteile. Vorteile: Konstruktive Freiheit, Keine Werkzeugkosten, Serienfertigung möglich, schnell Produktion Kundenspezifische Wünsche: Nachbearbeitung wie schleifen, prägen, färben, fräsen etc.
ADDITIVE FERTIGUNG VON METALLTEILEN

ADDITIVE FERTIGUNG VON METALLTEILEN

D3D ist Ihr Full-Service-Dienstleister im Bereich der additiven Metallfertigung und steht seinen Kunden bei allen Prozessschritten helfend zur Seite. Das Leistungsspektrum von D3D umfasst die ganze Prozesskette der additiven Fertigung, angefangen von der Beratung und Schulungen, bis hin zur Konstruktion, der eigentlichen Produktion und schlussendlich die Nachbearbeitung der gefertigten Produkte. Hiebei finden alle Prozessschritte im eigenen Haus statt.
Prototyping - 3D Print / Additive Fertigung - Fused Deposition Modeling (FDM auch FFF genannt)

Prototyping - 3D Print / Additive Fertigung - Fused Deposition Modeling (FDM auch FFF genannt)

Das Bauteil entsteht durch schichtweises Auftragen des aufgeschmolzenen Kunststoffdrahtes (verschiedene Originalmaterialen), welches durch einen Extruder aufgetragen wird. Diese Bauteile wiederum sind stabil, nahezu verzugsfrei, dauerhaft masshaltig ohne zu schrumpfen und absorbieren nur gering Luftfeuchtigkeit und bleiben bei sich ändernden Umweltbedingungen formstabil. Die gefertigten Bauteile werden mit feinen Schichtlinien roh belassen oder auf Wunsch gefinished (z. B. lackiert). Nachteilig ist eine geringere Detailsauflösung die sich aus dem Extrudieren der Kunststofflayer ergibt (Schichtstärken 0.330, 0.254, 0.178, 0.127mm). Für glatte Sichtteile ist das Verfahren daher weniger gut geeignet. Die Festigkeit der Teile ist Z Richtung geringer und daher werden die Teile zur Krafteinwirkungsrichtung ausgerichtet. Stratasys | Fortus | Fortus 900 MC| Fortus 360 MC | F 370 |
3D-Druck und additive Fertigung

3D-Druck und additive Fertigung

Der3D-Druck ist ein additives Fertigungsverfahren, bei dem verschiedene Materialien zur Herstellung von Teilen und Baugruppen verwendet werden. Was sind die Einsatzmöglichkeiten des 3D-Drucks? Der 3D-Druck wird eingesetzt, um: - die Funktionalität eines Teils/einer Baugruppe vor dem Start der Massenproduktion zu überprüfen - den Aspekt und die Merkmale eines Produkts zu demonstrieren und dem Benutzer Erfahrungen aus erster Hand zu vermitteln - die Kosten eines Produkts durch eine drastische Verkürzung der Entwicklungs- und Produktionszeit zu senken
Kunststoffeinfärbung  und Stabilisierung.

Kunststoffeinfärbung und Stabilisierung.

Wir entwickeln und produzieren kunden- und anwendungsspezifische Farb- und Additiv-Batche für das gesamte Polymerspektrum. Unsere Aufgabe sehen wir nicht nur in einer guten anwendungstechnischen Bearbeitung, sondern auch in einer individuellen, kundenorientierten Beratung. Gerne bearbeiten wir Ihre Anfrage und stehen mit Rat und Masterbatch zur Verfügung.
Hot Lithography

Hot Lithography

Hot Lithography ist ein laserbasiertes 3D-Druckverfahren, das dank eines speziellen Heizungs- und Beschichtungs­mechanismus die additive Fertigung von präzisen Kunststoffteilen mit guten mechanischen Eigenschaften realisiert. Durch die Heissschicht-Technologie können hochviskose und hochmolkulare Ausgangsstoffe verarbeitet werden. Im Hot Lithography Verfahren können wir ein höchst hitzebeständiges Material verwenden. Es hält Umgebungstemperaturen bis 300 °C stand und ist darüber hinaus auch chemikalienbeständig. Damit ist es besonders geeignet für Anwendungen in der Elektronik und der Luft- und Raumfahrt.
Keramik Motoröladditiv

Keramik Motoröladditiv

Hochleistungsadditiv-Paket mit KeramiK zur Verbesserung der Verschleißschutz-Eigenschaften. Erhöht die Betriebssicherheit im Hochtemperaturbereich. Spart Kraftstoff und reduziert Abgasemissionen. Keramik-Additiv Hochleistungsadditiv-Paket mit KeramiK zur Verbesserung der Verschleißschutz-Eigenschaften. Erhöht die Betriebssicherheit im Hochtemperaturbereich. Spart Kraftstoff. Weniger Abgasemissionen. Eigenschaften: • spart Kraftstoff • mehr Drehmoment • reduziert die Reibung • reduziert den Verschleiss • reduziert Laufgeräusche • Stabilität des Schmierfilms durch niedrigere Öltemperaturen • reduzierte Abgaswerte Anwendungsgebiete: Für alle Motoren geeignet. Inhalt: 300ml Gebinde: Weißblechdose
Produktionsmanagement

Produktionsmanagement

Gründe für eine in­effiziente, nicht an­forderungs­ge­rechte Produktion gibt es viele. Geänderte Stück­zahlen, Änderungen im Produkt­spektrum, über einen längeren Zeit­raum gewachsene, jetzt aber überholte Strukturen und vieles mehr. Dies führt im Ergebnis zu hohen Be­ständen, langen Durch­lauf­zeiten, über­zogenen Liefer­fristen und permanenten Um­planungen in der laufenden Produktion. Durch die Um­setzung und konsequente An­wendung von Lean Production-Prinzipien können elementare Optimierungen sowie kontinuierliche Ver­besserungen erzielt werden. Unsere Projekt­er­fahrung hat gezeigt, dass dem Material­fluss ange­passte Produktions­strategien in Planung und Steuerung, beispiels­weise die Ein­führung einer Pull-Systematik, einen wesentlichen Ein­fluss auf die Effizienz der Prozesse hat. Die Schnitt­stelle Produktion und Logistik, ins­besondere in der Material­versorgung und Nach­schub­steuerung, ist ein weiterer integrativer Bau­stein auf dem Weg zur effizienten Produktion in einer exzellenten Fabrik.
Fertigung kompletter Baugruppen

Fertigung kompletter Baugruppen

Wir produzieren faserverstärkte Bauteile ausschließlich an unserem Standort in Süddeutschland. Mit einem modernen Maschinenpark, einem innovativen Fertigungskonzept sowie gut geschulten Mitarbeitern, fertigen wir Bauteile mit höchsten Qualitätsanforderung. Profitieren sie von unserem gut sortierten Lager an Standard Abmessungen für Ihren ersten schnellen Prototyp innerhalb weniger Stunden. Wir begleiten sie bei der Individualisierung Ihrer Produkte bezüglich der Anforderungen und übernehmen die Serienfertigung. Vom Prototyp bis zur Großserie - Alles aus einer Hand.
Konzepte & Lösungen für Produktionsprozesse

Konzepte & Lösungen für Produktionsprozesse

Unsere maßgeschneiderten Lösungen für die Verpackungsprozesse Ihrer Produkte, basierend auf modernste Robotertechnologien, dienen der Verbesserung der Effizienz und Steigerung Ihrer Produktion. Unser Team entwickelt innovative Konzepte, die die spezifischen Anforderungen Ihrer Produkte erfüllen und gleichzeitig höchste Qualität und Präzision gewährleisten.
Automatisierte Fertigungszellen

Automatisierte Fertigungszellen

Automatisierte Fertigungszellen innovativ und maßgeschneidert Klug kombinierte Kompetenzen: Wir stellen unseren Kunden maßgeschneiderte, automatisierte Fertigungszellen zusammen, die exakt die mobitec-Technologien enthalten, die Ihre Produktion bereichern. Sie haben die Wahl: Unser breites Produktspektrum umfasst nicht nur hochwertige Biege-, Umform- und Rohrrolliermaschinen, sondern zum Beispiel auch Stanz-, Säge- und Entgrattechnik. Für welche Kombination Sie sich auch entscheiden, alle mobitec-Fertigungszellen sind entweder mit einem Roboter oder mit servo-motorischen linearen Handlingssystemen ausgestattet. Zusätzlich ist jedes der verschiedenen Elemente manuell bedienbar. Unsere effizienten Fertigungszellen sind für die Serienproduktion ausgelegt und werden in punkto Stückzahl und Taktzeit optimal auf Ihre Bedürfnisse abgestimmt. Gefragt ist die kombinierte mobitec-Technologie vornehmlich in der Automobilbranche, etwa bei der Produktion von Kraftstoffleitungen oder der Kühlwasserrohrtechnik.
Lohnfertigung

Lohnfertigung

Staiger Präzisionstechnik bietet umfassende Lohnfertigungsdienste, die auf die individuellen Bedürfnisse unserer Kunden zugeschnitten sind. Unsere Lohnfertigung umfasst eine Vielzahl von Prozessen, darunter Gewindedrehen, Oberflächenbeschichtung, Schleifen, Sandstrahlen und Härten. Mit modernster Technologie und einem erfahrenen Team sind wir in der Lage, qualitativ hochwertige Fertigungslösungen zu liefern, die den höchsten Standards entsprechen. Unsere Lohnfertigungsdienste sind darauf ausgelegt, Ihnen die Flexibilität und Effizienz zu bieten, die Sie benötigen, um Ihre Produktionsziele zu erreichen. Wir arbeiten eng mit Ihnen zusammen, um sicherzustellen, dass jede Komponente präzise und termingerecht gefertigt wird. Vertrauen Sie auf unsere Expertise und unser Engagement für Qualität, um Ihre Fertigungsanforderungen zu erfüllen.
Fertigung von Kunststoffformteilen

Fertigung von Kunststoffformteilen

Kunststoffverarbeitung Präzisionsteilefertigung im Schließkraftbereich zwischen 25 und 200 Tonnen und Schussgewichten zwischen 0,5 und 400 Gramm. Wartung und Instandhaltung nach jedem Maschineneinsatz durch unseren Werkzeugbau. Daher auch die Betreuung und Instandhaltung komplizierter Kundenformen problemlos handhabbar.
KONSTRUKTION / PROZESSENTWICKLUNG

KONSTRUKTION / PROZESSENTWICKLUNG

In unserem Unternehmen legen wir großen Wert auf eine effiziente Konstruktion und Prozessentwicklung. Die Konstruktion der Werkzeuge erfolgt intern in unserem Haus, wodurch wir sicherstellen können, dass sie genau auf die Anforderungen unserer Kunden zugeschnitten sind. Durch maßgeschneiderte Prozessentwicklung nutzen wir innovative Ansätze, um die Effizienz und Qualität unserer Fertigungsverfahren kontinuierlich zu verbessern. Hierbei spielen auch modernste Simulationstechniken eine entscheidende Rolle, um die Prozesse zu optimieren und mögliche Risiken frühzeitig zu erkennen und zu minimieren. So können wir sicherstellen, dass wir unseren Kunden stets hochwertige Produkte mit optimalen Herstellungsprozessen bieten
Prozessplanung

Prozessplanung

Projektmanagement / Prozessplanung Getreu unserem Lehrsatz: „ Der Grundstein für eine wirtschaftliche Serienfertigung wird bereits in der Phase der Bauteilkonstruktion gelegt.“sehen wir es als unsere Pflicht an, vorausschauend zu entwickeln. Dieses Prozess-Denken ist unser Fundament, basierend auf langjähriger Erfahrung, mit dem Transfer von Bauteilen und Prozessen aus der Entwicklungsphase hinein in den Serienprozess. Auf Basis systematischer Analyse und Definition von kundenspezifischen Anforderungen entwickeln wir effektive und sicherere Prozessketten. Hierbei loten wir die Grenzen des technisch Machbaren unter Berücksichtigung neuester Fertigungstechnologien aus.
Multi-Jet-Fusion (MJF-Verfahren)

Multi-Jet-Fusion (MJF-Verfahren)

Das Multi-Jet Fusion-Verfahren findet Anwendung in diversen Bereichen. Aufgrund der Schnelligkeit und Genauigkeit des Verfahrens wird es oft in der Prototypenentwicklung eingesetzt. Hierdurch können die Unternehmen ihre Produktideen schnell visualisieren und die Funktionen überprüfen, bevor höchst genaue Bauteile in der Serienfertigung produziert werden. Durch den Vorteil des Verfahrens, das es Modelle mit hoher Komplexität herstellen kann, wird es zur Herstellung von Präsentationsmodellen verwendet. Grund hierfür ist die Herstellung des Bauteils mit feinen Details, Texturen und Farben. Hierdurch können beispielweise Architekten, Designer und Konstrukteure realistische Modelle erstellen, um ihrer Ideen visuell zu präsentieren. Auch in der Medizintechnik wird das Polyjet-Verfahren angewendet, um maßgeschneiderte Prothesen, Modelle für chirurgische Versuchsplanungen und Zahnmodelle herzustellen. Das Multi-Jet Fusion-Verfahren wird auch in der Luft- und Raumfahrtindustrie sowie der Automobil­industrie verwendet, um Prototypen und Modelle von Flugzeug- und Raumfahrzeug- sowie Automobilteilen herzustellen. Es ermöglicht es den Ingenieuren, komplexe Geometrien und Strukturen zu testen und zu optimieren. Für das Herstellen von Bauteilen mithilfe des Polyjetverfahren werden UV-härtbare Photopolymere als Druckmaterial verwendet. Dieses Material ist flüssig und wird mithilfe von UV-Licht ausgehärtet. Die Auswahl an Druckmaterialien für das Polyjet-Verfahren ist vielfältig und umfasst sowohl harte als auch weiche Materialien. Bei der delbramed GmbH kommen folgende Materialien zum Einsatz: Standardmaterial: Dieses Material bietet eine gute Festigkeit, Härte und Detailgenauigkeit. Es eignet sich gut für die Prototypenentwicklung, das Modellieren von Gehäusen und Bauteilen sowie für die Herstellung von Funktionsmustern und Serienteilen. Flexibles Material: Dieses Material weist eine gewissen Flexibilität und Dehnbarkeit auf. Hier sind die Shore-Härte A35 und A65 im Einsatz. Dieses Material ist nützlich, wenn Teile mit gummiartigen Eigenschaften benötigt werden, wie zum Beispiel für Dichtungen, Gummifedern oder Griffe. Hitzebeständiges Material: Dieses Material weist eine hohe Hitzebeständigkeit auf und kann Temperaturen von bis zu 100°C standhalten. Es eignet sich für die Anwendung, bei der hohe Temperaturen auftreten, wie beispielsweise in der Automobilindustrie, Medizintechnik oder dem Maschinenbau.
3D-Drucken

3D-Drucken

Komplexität Ihrer Bauteile gegen Unendlich! Mithilfe von der additiven Fertigung sind wir nicht mehr an die Grenzen der zerspanenden Fertigung gebunden. Wir können Ihnen folgende Dienstleistungen anbieten: • Selektives Lasersintern (SLS) • Laserauftragsschweissen • Arburg Kunstoff Freiformen • Selektives Laserschmelzen (SLM) • Rapid Prototyping • Metall Pulver Auftrag (MPA) • 3D Drucken von Gummibeschichteten Gummiteilen • CNC-Nachbearbeitung von additiv gefertigten Teile Folgende Materialien können verarbeitet werden: Stähle • 1.2344 Warmarbeitsstahl (H13) • 1.2367 Warmarbeitsstahl • 1.4404 Rostfreier Stahl (316L) Schwermetalle • Reinkupfer • Bronze Leichtmetalle • Titan • Aluminium Kunststoffe: • PA 2200 • PA 3200GF (PA12-GB) • Alumide (PA12-MD(AI)) • ABS Vorteile von der additiven Fertigung • Maximale Gestaltungsfreiheit • Teile können innerhalb von wenigen Stunden bzw. Tagen gefertigt werden • Beim Metallpulverauftragsverfarhen können auf diverse Materialen andere Materialien aufgetragen werden • Verwirklichung von konturnahen Kühlungskanäle bei Spritzgusswerkzeugen oder Motorhalterungen • Greifer können optimal an das Bauteil angepasst werden und Luftkanäle etc. gleich mitgefertigt werden • Leichtbauweise mithilfe von biometrischen Strukturen möglich • Implantate aus Titan etc. können direkt an das Gegenstück etc. angepasst werden und verwachsen aufgrund der rauhen Oberfläche ideal mit dem Knochen • Kronen, Brücken und Käppchen können in der Dentalbranche optimal an die Lücke angepasst werden • Komplizierte Gitter- und Wabenstrukturen lassen sich einfach herstellen • Schmuckstücke oder Designobjekte können individuell hergestellt werden • Materialeinsparung gegenüber der spanenden Fertigung Nachteile von einer additiven Fertigung: • nicht alle Materialien können bereits gedruckt werden • Oberfläche der Teile sind rauh --> müssen nachbearbeitet werden • Passungen, Gewinde etc. müssen anschließend nachbearbeitet werden
3D-Druck Dienstleistung SLA

3D-Druck Dienstleistung SLA

3D-Druck Dienstleistung SLA .
HPDC-Automatisierung

HPDC-Automatisierung

Turnkey-­Anlagen und Einzel­komponenten für den Druckguss Unsere Anlagentechnik und Auto­mati­­sierungs­­lösungen übernehmen die Entnahme aus der Gießmaschine, das Prüfen, Kühlen, Sägen, Entgraten sowie Form­sprühen (Trenn­mittel­auftrag). Zusätzlich bieten wir Lösungen für das Markieren der Werkstücke mittels Nadel­präger oder Markier­laser sowie den Werk­stück­transport mit Hilfe unserer Förder­technik.
GABELGELENK DIN71752 INNENGEWINDE M06 RECHTSGEWINDE, G=12, D1=6, B=6, EDELSTA...

GABELGELENK DIN71752 INNENGEWINDE M06 RECHTSGEWINDE, G=12, D1=6, B=6, EDELSTA...

Werkstoff: Edelstahl 1.4305. Ausführung: blank. Bestellbeispiel: K0732.0816 Auf Anfrage: Linksgewinde.
Zusatzleistungen | Erodieren

Zusatzleistungen | Erodieren

Das Erodieren ist eine präzise Bearbeitungstechnik, die die BLAIER GmbH über ihr Netzwerk anbietet. Diese Technik ermöglicht die Herstellung komplexer Formen und feiner Details in Bauteilen durch den Einsatz von elektrischen Entladungen. Das Erodieren ist ideal für Anwendungen, die eine hohe Präzision und Detailgenauigkeit erfordern. Durch die Zusammenarbeit mit erfahrenen Partnern stellt die BLAIER GmbH sicher, dass die erodierten Bauteile den höchsten Qualitätsstandards entsprechen. Diese Dienstleistung ist ideal für Branchen, die auf präzise und komplexe Bauteile angewiesen sind. Die BLAIER GmbH bietet damit eine effektive Lösung für das Erodieren von Bauteilen.
Prototyping - 3D Print / Additive Fertigung - Digital Light Processing (DLP)

Prototyping - 3D Print / Additive Fertigung - Digital Light Processing (DLP)

Beim 3D Druckverfahren DLP wird UV-lichtempfindliches Harz (Photopolymer) als Ausgangsmaterial eingesetzt, wobei der Unterschied zum UV-Laser Stereolithographie (SLA/STL) Verfahren eine lichtgebende Quelle aushärtet. Hierbei dient ein Projektor als Lichtquelle. Schichtweise härtet das Licht an der gewünschten Stelle das Material aus. Hinterschnitte und Überbauungen werden mit einer aus dem gleichen Material gebauten Stützstruktur gestützt und anschliessend manuell entfernt. Eine Curing Station härtet die Teile aus. Diese gefertigten Bauteile weisen eine sehr hohe Detailtreue und schöne Oberfläche auf. Hauptsächlicher Nachteil ist die begrenzte Einsatzfähigkeit von unlackierten Teilen. Da das Material als Photopolymer fortwährend UV- Licht aufnimmt, sind die Bauteile nicht dauerhaft UV- stabil. Bei Urmodellen spielt dies keine Rolle, da hier nicht die Notwendigkeit der langen Lagerung besteht. 3D Systems | 3D– Systems | Photocentric | Figure4 | LC Magna | Liquid Crystal Magna |
SLS selektives Lasersintern von Kunststoff

SLS selektives Lasersintern von Kunststoff

Selektives Lasersintern ist ein additives Fertigungsverfahren, bei dem ein Hochleistungslaser zum Einsatz kommt, der kleine Polymerpulverpartikel zu einer massiven Struktur sintert, die auf einem 3D-Modell basiert. Teile, die mit SLS gefertigt wurden, bieten herausragende mechanische Eigenschaften, deren Festigkeit mit der von Spritzgussteilen vergleichbar ist. Der SLS-3D-Druck beschleunigt die Innovation und unterstützt Unternehmen in einer Vielzahl von Branchen, darunter im Maschinenbau, der Fertigung und dem Gesundheitswesen. Ingenieure und Hersteller wählen SLS aufgrund der Gestaltungsfreiheit, der hohen Produktivität und des hohen Durchsatzes, der niedrigeren Stückkosten und der bewährten Materialien für die Endverwendung. Unsere Genauigeit liegt im Bereich von 5 μm mit einer feinen Oberflächenglätte.
DLP Digital Light Processing für hohe Details und Oberflächen

DLP Digital Light Processing für hohe Details und Oberflächen

Mittels Digital Light Processing werden extrem detailreiche, präzise Modelle im 3D Druckverfahren hergestellt. DLP wird zumeist in der Schmuckindustrie oder dem Prototypenbau verwendet. Auch für die Herstellung von Kunst – beispielsweise kleine Skulpturen – eignet sich das Verfahren hervorragend. Auch im Modellbau oder für Table Top Spiele werden detailgetreue Modelle mittels Digital Light Processing gefertigt. Da das Digital Light Processing auf Materialien angewiesen ist, die unter Lichteinstrahlung ihr Gefüge ändern und somit aushärten, ist die Auswahl an Materialien überaus begrenzt. Aktuell werden Photopolymere in flüssiger Form eingesetzt. Diese Kunststoffe können allerdings mit keramischen Materialien vermengt werden. Die Vorteile des Verfahrens liegen eindeutig in der Geschwindigkeit. Bei großen Drucken mit voller Dichte wird jede Schicht schneller belichtet, als es bei Verfahren mit Laser der Fall ist. Vorteile: - Kompakte Bauform - Schneller Druck Unsere Genauigkeit mit dem DLP Verfahren liegt bei 5 μm mit einer sehr feinen Oberflächenglätte.
Konsilager, Rahmenaufträge und Baugruppenfertigung

Konsilager, Rahmenaufträge und Baugruppenfertigung

Unsere Dienstleistungen im Bereich Konsilager, Rahmenaufträge und Baugruppenfertigung bieten Ihnen die Flexibilität und Effizienz, die Sie benötigen, um Ihre Produktionsziele zu erreichen. Bei Staiger Präzisionstechnik verstehen wir die Komplexität moderner Fertigungsprozesse und bieten maßgeschneiderte Lösungen, die auf Ihre spezifischen Anforderungen zugeschnitten sind. Unsere Expertise in der Baugruppenfertigung ermöglicht es uns, komplette Baugruppen mit höchster Präzision und Qualität zu liefern. Wir arbeiten eng mit unseren Kunden zusammen, um sicherzustellen, dass jede Baugruppe den höchsten Standards entspricht und termingerecht geliefert wird. Unsere Fähigkeit, Rahmenaufträge effizient zu verwalten, ermöglicht es uns, kontinuierlich hohe Qualität und Zuverlässigkeit zu gewährleisten. Vertrauen Sie auf unsere Erfahrung und unser Engagement für Exzellenz, um Ihre Fertigungsanforderungen zu erfüllen.
RÄNDELRAD GR.1, D1=40 D=M06, , FORM:D, THERMOPLAST SCHWARZ RAL7021, KOMP:EDEL...

RÄNDELRAD GR.1, D1=40 D=M06, , FORM:D, THERMOPLAST SCHWARZ RAL7021, KOMP:EDEL...

Werkstoff: Thermoplast, schwarzgrau. Buchse bzw. Gewindebolzen aus Edelstahl 1.4305. Ausführung: Edelstahl blank.
RÄNDELRAD GR.1, D1=40 D=M05, , FORM:D, THERMOPLAST SCHWARZ RAL7021, KOMP:EDEL...

RÄNDELRAD GR.1, D1=40 D=M05, , FORM:D, THERMOPLAST SCHWARZ RAL7021, KOMP:EDEL...

Werkstoff: Thermoplast, schwarzgrau. Buchse bzw. Gewindebolzen aus Edelstahl 1.4305. Ausführung: Edelstahl blank.
RÄNDELRAD GR.1, D1=40 D=M08, , FORM:D, THERMOPLAST SCHWARZ RAL7021, KOMP:EDEL...

RÄNDELRAD GR.1, D1=40 D=M08, , FORM:D, THERMOPLAST SCHWARZ RAL7021, KOMP:EDEL...

Werkstoff: Thermoplast, schwarzgrau. Buchse bzw. Gewindebolzen aus Edelstahl 1.4305. Ausführung: Edelstahl blank.
RÄNDELRAD GR.3, D1=63 D=M12, , FORM:D, THERMOPLAST SCHWARZ RAL7021, KOMP:EDEL...

RÄNDELRAD GR.3, D1=63 D=M12, , FORM:D, THERMOPLAST SCHWARZ RAL7021, KOMP:EDEL...

Werkstoff: Thermoplast, schwarzgrau. Buchse bzw. Gewindebolzen aus Edelstahl 1.4305. Ausführung: Edelstahl blank.